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The Convergence Rate of a Multigrid Method 
with Gauss-Seidel Relaxation for the 

Poisson Equation 

By Dietrich Braess 

Abstract. The convergence rate of a multigrid method for the numerical solution of the 
Poisson equation on a uniform grid is estimated. The results are independent of the shape of 
the domain as long as it is convex and polygonal. On the other hand, pollution effects become 
apparent when the domain contains reentrant corners. To estimate the smoothing of the 
Gauss-Seidel relaxation, the smoothness is measured by comparing the energy norm with a 
(weaker) discrete seminorm. 

1. Introduction. In this paper we will treat a multigrid method for the numerical 
solution of a discretization of the elliptic boundary value problem 

(1.1) -Au = f in cR2, 
u = O on aQ. 

Here 02 is assumed to be a polygonal domain such that its boundary matches the 
horizontal, vertical or diagonal lines of a uniform grid. The discretization will be 
done by the finite element approximation which leads to the standard 5-point 
formula. 

The advantage of the multigrid method is the fact that the convergence rate can be 
bounded away from one while in the classical iterative procedures it tends to 1 as 
h -O 0. Here the convergence rate for a sequence (uk), uk -+ u, is measured by the 
error damping factor 6 = SUPk{I1 uk+l - ull/lluk - ull) with an appropriately chosen 
norm. 

There are two types of convergence proofs for multigrid methods in the literature. 
The results of the first type, e.g. [1]., [8], [13], [19], refer to arbitrary convex domains 
or to domains with smooth boundary. Moreover, more general elliptic problems than 
(1.1) are treated. A convergence rate bounded away from 1 is established for 
sufficiently many smoothing steps under the condition that the problem (and the 
solution) are sufficiently regular. The investigations of the second type, e.g. [4], [7], 
[11], [16], establish explicit and promising bounds for the convergence rate by 
Fourier methods; but they are restricted to rectangular domains. 

Because of the gap between the two theories there is still the unanswered question 
whether the good performance of multigrid methods depends on regularity proper- 
ties [9, p. 157]. 
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We will partially fill this gap and establish explicit bounds for arbitrary convex 
(polygonal) domains. A typical result from Table 1 in Section 6 shows that the 
convergence rate is 0.172 or better, when at least one Gauss-Seidel relaxation step 
per cycle is performed for the smoothing. Our result is not far from the number 
0.125 which was recently determined as the asymptotic convergence rate for rectan- 
gular domains [16]. The given rate guarantees quick convergence of the multigrid 
iteration with W-cycles. Moreover, we show that the multigrid iteration with 
V-cycles has a convergence rate better than 0.5. Though our theoretical result might 
be still considered as a poor bound relative to the actually observed efficiency, no 
comparable rigorous result for V-cycles seems to exist in the literature. 

On the other hand, in our theoretical study, pollution effects become apparent 
when the domain contains reentrant corners (einspringende Ecken). Thus, these 
corners may spoil the very fast convergence. Fortunately, their influence on the 
multigrid iteration may probably be considered as a pollution effect of local 
character. We will comment on this in the last section, though a rigorous treatment 
goes far beyond the framework of this paper. In any case, the convergence rate 
cannot become worse than 1/2, since this bound holds for arbitrary domains and 
not merely for convex ones [3]. 

The linear equations from the discretization of (1.1) characterize the solution of a 
variational problem in a finite element space Sh. The central idea is the decomposi- 
tion of Sh as a direct sum of two subspaces: Sh = V E W, where V = SH is the finite 
element space for a coarser grid [2], [3], [11], cf. also [10], [12]. The alternate solution 
of the variational problem in V E W generates an iteration, for which the conver- 
gence rate may be estimated via a strengthened Cauchy inequality. In contrast to the 
previous investigations cited above, we will control the multiplying factor in this 
Cauchy inequality for the individual elements. By measuring smoothness with a 
discrete seminorm, which like the energy norm may be defined locally but which is 
weaker, we find quasi-orthogonality for the decomposition in just those cases where 
the Gauss-Seidel relaxation is not effective, and conversely. Finally a duality 
argument enables us to prove convergence of the algorithm with V-cycles. 

Our analysis refers to multigrid methods where the mesh-size ratio is r/ [3], [7], 
[16]. Similar investigations for algorithms with mesh ratio 2 are found in [18]. 

2. Notation. Let 02 c R2 be a bounded domain. Assume that there is a triangula- 
tion of 02 with rectangular isosceles triangles with sides of length h and H = /2ih (see 
Figure 1). The set of grid points { pi) which are contained in 02 is denoted by OhI 

while OH refers to the (rotated coarser) subgrid formed by triangles with sides of 
length H and H/2 = 2h. Similarly 02h c UH is defined. When we associate to each 
grid point one or two colors: 

black to the points of Oh \ OH 

white/red to the points of OH \ Q)h' 

white/green to the points of 02h' 

then the black-white coloring endows Oh with the structure of a checkered board, 
while the red-green one does the same for OH. 
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FIGURE 1 
As usual, let Sh denote the space of those functions from C(i2) which are linear on 

each triangle of Qh and which vanish on au. The discretization of (1.1) for the grid 
oh is understood to be the (solution of the) variational problem in Sh: 

(2.1) J(u):= a(u, u) - 2(f, u)o -min! 

Here, 

(2.2) a(u, v)= I(u vf + u,v,) d d-q, (u, v)0= uv d d-q. 

When Sh is equipped with the energy normu = a (u, u), the norm is easily given 
in terms of the values on the grid u, =u(p): 

(2.3) 11u12 = E (U - u )2. 

d(i, J) =h 

The summation runs over all pairs of grid points with Euclidean distance h, and the 
points on the boundary are included. Here and in subsequent symmetrical sums, 
each pair is taken only once. 

Next we endow Sh with a seminorm I 1: 

(2.4) IU12 (Un - Um) 2. 
n, m 

Pn APm O 

d(n, m)=2h 

In this sum the terms related to points next to the boundary are to be understood as 
follows. Let ( Pn pm) be a pair of points with distance 2h, such that pn is an interior 
point of 02 while Pm 4 S. (The point in the middle between pn and Pm is located on 
aS2.) Then by convention 

(2.5) 2(Un - Um)2 iS to be replaced by (un _ 0)2. 

We note that 

(2.6) Iu <IIuII for each u E Sh, 

because we have(un - U)2 < 2(Un-Unm)2 + 2(Unm - u)2 wheneverpn,pm E =2h 

and Pnm is the grid point in between. 
We mention that in the analysis of the Gauss-Seidel iteration, seminorms of the 

more general form 

(2.7) I1u2i0g:= c(8) L (u, - U,)2 

Pk , PIl Oh 
d(Pk, PI) =' 
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will enter, where U.h = or Oh \ .H and 6 = H, 2h or 2H. They will be estimated 
by jlull and Jul, which are also special cases of the general expression given in (2.7). 

3. Decomposition of Sh and the Strengthened Cauchy Inequality. As in [31, we 
decompose Sh as a direct sum 

(3.1) Sh = SH ED Th 

where SH is the analogous finite element space for the coarser grid OH and 

(3.2) Th = ( W E Sh; w(pi) = 0 forp, E 2H} 

The letters u, v and w will always be understood in the spirit of the decomposition 
u = v + w according to (3.1). In particular, we may write 

(3.3) lul = lvl 

because the seminorm I I refers to points of .H only. (On the other hand, is a 
norm for the subspace SH.) 

In [2], [3], [11] strengthened Cauchy inequalities were used with constants which 
depended only on the choice of the subspace. Here we will derive improved bounds 
which depend on the smoothness of the individual elements. 

LEMMA 3.1. Assume that 2h has no concave corner at the points of Oh \ OH* If 
v E SH and w E Th, then 

(3.4) ja(v,w)l <, A2 (1 - I 1 2 llVllllWll. 

Proof. Let v e SH and w E Th. In order to estimate a(v, w), consider the integral 
over the triangle I in Figure 2a. We recall that vt, v. and w. are constant while 
wej = Iw,j and we changes its sign at the broken line (cf., (3.5) in [3]). Now 

f(V(W( + v"w,) = fv"w" 

(3.5) - 2 + 1 fw4 - I 21(V -wi)2 

- 2 fI(V(2 + VY2,) + 4If(W'2 + W2) - 1fv2 - 1 f(V" _ - )2 

=:Al + BI - C1- DI. 

For convenience we will skip the discussion of the influence of the boundary for a 
moment and first proceed as if there are only interior triangles. 

Obviously, when summing over all triangles, we get 

(3.6) 
I 

= - V- Vm). 
22 

v n, m green 
d(n, m)=2/h 

The last term in (3.5) is also evaluated in connection with the corresponding term for 
triangle II. 

(3.7) DI + DII [= V1 ( - (V - )5]2 + 2 [V3 - (V -05 ] 

1 - n ( 7Z)2 + ( - _ 2 = >1 - , ) _ 2 
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a) b) c) d) 

FIGuRE 2 
Specifications for the proof of Lemma 3.1 

(ThepointsP2 and p4 belong to 22h) 

a: triangles in the interior; b, c, d: boundary situations. 

Hence, 

D, >, 2 E 2(vn- Vm), 
vi n, m red 

d(n, m)=2h 

and the collection of terms yields 

(3.8) a(v,w) < 1(IIVI12 - IV12) + IIwI12. 

Now we turn our attention to the triangles next to the boundary. Because of the zero 
boundary condition, w and vt vanish in triangle III (see Figure 2b). Consequently, 

f(vt?w + vVw1) = 0= 1fv2 + + 0 - 0 - 
1 2 

= AIlI + BIII - CIII DI- I 

This splitting is consistent with the summation for the regular triangles. Since also w 
vanishes on the triangles IV and V, the analysis there is analogous. We note that in 
this boundary formation triangle V belongs to the grid U.; but this does not change 
the arguments. 

Finally, if liwli = V2(11v112 - IV12) ,it follows from (3.8) that 

(3.9) a(v, w) I 
11vI12 _ Iv12 = /(IIvI12 _ Iv12) lIwlI. 

A simple homogeneity argument shows that (3.9) holds for all w E Th and that the 
left-hand side may be replaced by its absolute value. C1 

We note that given v E Sh one can find a w E Th, w =# 0, such that equality holds 
in (3.4). To this end we need only choose w such that (3.7) becomes an equality. 
(Actually, this w is computed by a half step of the Gauss-Seidel iteration.) 

As a consequence of Lemma 3.1 we have 

(3.10) lvi < lvil. 

We will often put A = ivil/llvil. In order to estimate lul/lilull, we refer to Figure 3. 
Given u = v + w, we conclude that liull > livil sin a, where by Lemma 3.1 COS2 a 

< '( - A2). Hence, 

(3.11) lul = Ivi = Aiivii , .inua < luliu sin (1+a2/2lul 
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/~~~~ 

0 

FIGuRE 3 

Decomposition u = v + w after the optimization in W and u' = v' + w 
after the optimization in V. Here cos a = a(v, w)/(IIl v IIwli). 

4. The Gauss-Seidel Relaxation. The solution of the variational problem (2.1) in Sh 
is determined by a linear system of the form 

(4.1) ui = 1 
1'uj + bi, PiGE h 

where E4 refers to the summation over all neighbors in the grid 2h with distance h. 
The numerical solution of linear equations of the form (4.1) and the convergence 
rate of the multigrid methods for solving them is the central point of this paper. 

A classical tool to solve (4.1) is the Gauss-Seidel iteration [17] which for conveni- 
ence will be split into two steps: 

{u, if pi E UU, 

(Ghu)1 = i+ bi if p, 1 SH 

(h - E'u + bi if p e S2 

In multigrid algorithms the point Gauss-Seidel relaxation Gh Gh' often occurs as a 
smoothing procedure. Here it is also applied for another purpose: The minimum of 
the variational functional J(u) in the subset u + Th is just Ghu. The following lemma 
will show that the error of an approximate solution will be reduced by the relaxation 
provided that it is not smooth. For another inequality which describes this effect, the 
reader is referred to [18]. 

We recall that interest in error estimates naturally leads to a study of the 
homogeneous equation. Therefore in the rest of this section we will assume b = 0. 

LEMMA 4.1. Assume that Su is convex. If u = G pu, then 

Proof. First we will ignore the boundary to simplify the analysis. 
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Put u = G"u. Given po EU., choose the (local) indices 1,2, 3 and 4 for its 
neighbors in sh. We will make use of the identity: 

4 

2 L 2 =(z -Z 2)2 + (Z2-Z3)2 + (Z3-Z4)2 + (Z4 ) 
j=1 

+ 2 + Z2 + Z3 + Z4- 2 - Z2 + Z3 Z4 

From u = GI u it follows that 

= 1 4 _ 4 
io= aEu,= iul. 

When we put z, = u- - = u, - iio, we obtain from the identity above 
4 

(4.3) 2 (uj-uo) 4 { 
(Ul -U2 + (U2 -U3) + (U3 -U4) + (U4 -UI)2) j=1 

We rewrite (2.3): 

(4.4) IIuI12 u 2 
i white j black 

d(i, j)=h 

The inner sum may be estimated by using (4.3). The summation yields 

(4.5) IIG'IIul2 - E (Uk - U )2. 
k, I black 

d(k, I)= H 

The factor 1/2 in (4.3) compensates for the fact that each pair k, 1 occurs in two 
terms of the outer sum. For the situation shown in Figure 4 this happens for i = 2 
and i = 6. 

3 k _ 4 

'7 6 U 

2 k 1 

5 

FIGURE 4 

Illustration to the estimation of (4.5) (k, 1, k', 1' are black). 

Next we consider one term from the sum in (4.5) and enumerate the neighbors of 
Pk and p, as illustrated in Figure 4. Since u = Glu, it follows that Uk and u, are the 
mean values of the numbers which u attains at the neighbors. 

(4.6) 16(uk - u1)2 = [Iul + u5 - U3 - U7 ] < 2(ul - U3 )2 + 2(u5 - U7 
) 

The differences refer to pairs of points at a distance 2hV2 = 2H. When the sum is 
evaluated, each pair occurs twice, e.g., (ul - u3 )2 is found in the bounds for 
(uk - u,)2 and for (Uk' - ul,)2. Hence, 

(4.7) jjG"Iujj2 < 1 (UmUn )2. 
m, n white 

d(m, n)=2H 
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Finally consider an arbitrary square with length 2h and vertices in C H, e.g. the upper 
one in Figure 4. Then we treat the terms in (4.7) corresponding to the diagonals 
according to 

(U1 -u3) + (U2 -u4) = (U1 -U2) + (U2 - U3) + (U3 -U4 

+ (U4 - U1)2 - (U1 - U2 + U3 -U4)2 

Since each side of length 2h separates two squares, we obtain by summation thc 
estimate wanted: 

(4.8) ||G"u|1 2 1 (un - Urn) 
n, m white 

d(n, m)=2h 

Now we turn our attention to the analysis of boundary terms. The case, where the 
white point po lies on a (horizontal) boundary, is presented in Figure 5a. Then 

(4.9) ( _ ,o)2 (uUl-0)2= 1( - )2 + - ( 2 

d(j,O) =h 

is consistent with (4.3). 

13 T 4 \ \<- k 14 

4 0 2 7 E 6 I Q' 

1 ~~ ~~ ~~2 k 1 2 k 

5 

a) b) c) 

FIGuRE 5 
Boundary formations. 

The boundary configuration which corresponds to that one from Figure 4 is 
shown in Figure 5b. Then only Uk is a mean value, while u1 = 0 is fixed, and 

16(uk - u,)2 = (u1 + u2 + Us ) 

< 4(u1 - 0)2 + 4(u2 - 0)2 + 2(u5 - U7). 

The last term is standard, while the first ones replace 2(u1 - u3)2. Another copy of 
(Uk - u,)2 replaces 2(ul - u5 )2. Therefore we obtain immediately the expression 
comparable to (4.8) and the step leading to (4.7) is skipped. The doubling of the 
weights is consistent with (2.5). 

When a white point lies on a diagonal boundary (see Figure 5c), the correspond- 
ing terms from (4.4) are directly expressed by those of (4.7). We have 

16(uk - U1)2 = 16(Uk - U6) = (U2 + Us) 

< 2(u1 - u2)2 + 2(U5 -U6)2 
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We note that no other term of the form (u1 - u2)2 from the square (Pl, P2' P3, P4) 

enters into the right-hand side of (4.8). So we are done. 
We abandon the discussion of convex corners because their treatment is simpler or 

is done by combining arguments from above. C1 
The reader will observe in the preceding proof that I u may always be estimated 

by some lul whenever 6' < S. The converse is possible only in connection with 
relaxation. 

Since GI acts only on the w-part and lul depends only on the v-part we have 

COROLLARY 4.2. If 2 is convex, then IIGh' GIuII < I ulfor all u E Sh. 

We note that the constant 1 in (4.2) is the best possible because the convergence 
rate of the Gauss-Seidel iteration is close to 1 and IIG`' GI I = 1 - 0(h2), see [17]. 

5. Remark on the Alternate Method. One element of the multigrid algorithms is 
the method of alternate minimization in two subspaces [2]. We find it-though not 
in its pure form-in two connections. The combination of a coarse-grid-correction 
with the relaxation (half-) step GI is the alternate method associated with the 
decomposition Sh = SH ED Th. On the other hand, the classical Gauss-Seidel relaxa- 
tion GI . GI, is associated with the decomposition Sh = Th E Th, where Th = (u E 

Sh; U(p) =O for all Pi E Uh \ UH). 

Let H = V ED W, where V and W are closed subspaces of the Hilbert space H. 
Denote the orthogonal projections onto V and W by Pv and Pw, resp. Moreover, 
put Qv = id - Pv and Qw = id - Pw. When the alternate method is used for the 
homogeneous problem, the iteration is given by (5.1). 

Remark 5.1. Given uo E H, let 

(5.1) u'+1/2 = Q I u'+1 = QWu+'1/2, v = 0,1,2,.... 

Then after the first half-step the relative norm reduction becomes successively 
slower, i.e., 

(5.2) IIuv>1/2II IIuI 

holds for any integer or half-integer v > 1/2. 
Proof. Assume that u = Qwu. Recalling that Qv and Qw are projection operators, 

we get 

IIQVU112 = (QVU, Qvu) = (u, Qvu) = (QWu, QVu) 

= (u, QWQVu) < lulllIQWQVuII. 

Since any up, v an integer v > 1, satisfies the assumption above, it follows that (5.2) 
is true for these v's. By interchanging the role of Qv and Qw we get the statement 
for half-integer v's. [1 

Obviously (5.2) means that the function v '-- logII uII is convex. 

6. Convergence Rate of the Multigrid Method. Now we are in position to analyze 
a multigrid method for the numerical solution of (4.1) on uniform meshes. Let hq, 
q = 0,1,..., qmax, be a finite sequence of mesh-sizes with hq-I = JZhq, q > 1. The 
corresponding grids will be denoted by S2q instead of Uhq. We will replace each suffix 
(or superscript) hq by q, when adapting the notation from the previous sections. 
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If q = 0, the linear equations associated to C2q are solved directly. For q > 1 an 
iteration is defined as a recursive process. Each iteration loop contains one correction 
on the next coarser grid and r smoothing steps, r > 1. 

As usual, the variables carry three superscripts; these refer to (1) the level, (2) an 
iteration count, and (3) a count of the steps within one iteration loop. 

For convenience, we understand Gq' to be GI if v is odd and that it is G 
otherwise. 

ALGORITHM 6.1 (kth loop at level q for the multigrid iteration with r smoothings). 
0. Start. Given Uq,k,O. If k = 0, replace it by Gr +l uq,k,O. 

1. Pre-smoothing. For v = 1, 2,..., r - 1, compute 

uq,k VP G+I- -q,k,v-l 

q 2. Transition step. Put Uqskr - GIuq,k,r-l 

3. Coarse grid correction. Let uq-1 denote the solution of the variational problem 

j(Uq,k,r + u) min! 

when u E Sq-1V 
If q - 1 = O, compute v1 uq-1. If q - 1 > 0, compute an approximate solution 

v1 to uq-1 by applying u = 1 or u = 2 iteration steps at the level q - 1, starting with 
Uq-100 = 0. Put Uq,k,r+l = Uq,k,r + V1. 

4. Post-smoothing. For v = 1, 2,..., r + 1, determine 

q 

and proceed with Uq,k+1O -Uq k 2r+2 

Here r Gauss-Seidel relaxation sweeps are partly performed before the correction 
step and partly after it. Another half-step is added, because it simplifies the transfer 
to the coarse grid [3], [7]. We may abandon the discussion of the numerical 
realization of Algorithm 6.1, because this can be found in [3, Section 2] and in [16]. 
Other aspects for the preparation of efficient codes are given in [6]. 

The estimate of the convergence rate will be established for a generalization of 
Step 3. 

3'. Determine an approximation v1 to uq-1, where uq-1 is defined as in Step 3, 
such that 

(6.1) IIv_ - 111 < SIIuq- 

and put Uq k,r+l = Uq,k,r + v1. 
In particular, we have: 

8 = 0, if q = 1 or more generally if the 2-level-iteration is performed, 
8 = (8q- 1)', if ,u iteration steps are performed at level q - 1. 

Here q -1 is the convergence rate of the (q - 1)-level process. We notice that in this 
investigation convergence rates are measured by norms and not by spectral radii. 

For ease of notation we will drop the superscripts q and k. Moreover, we will refer 
to the homogeneous equation again. 
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We decompose u' in the sense of (3.1), u' = v' + w, r E S r E T and set 
X = IVrl/llvrll, p = 2A2/(A2 + 1). From (3.11) and Lemma 4.1 we have 

(6.2) q G ,u'II u<, 
IIUr'II IIurl II 

Recalling that GI and GI, constitute an alternate method, we conclude from Remark 
5.1 that each application of half a Gauss-Seidel relaxation in the first two steps 
improves the approximate solution at least by the factor on the right-hand side of 
(6.2). Hence, 

(6.3) ~~~~~~~~llurll < p/|u| 

Let u' = Ur - Uq-1 denote the exact solution of the auxiliary problem in Step 3. 
From Lemma 3.1 in [3] we know that the execution of the exact coarse grid 
correction (with 8 = 0) yields an improvement by the factor in the strengthened 
Cauchy inequality (3.4): 

(6.4) Ilu'll 4 /(1 - A2) IlurIl < pr2 1(1 - A)2 . 2iu 

= pr/2 p Ilu*ll. 

Now we will control the perturbation in the correction step by applying the same 
trick as in [3]. Referring to (6.1) we may write ur+ in the form 

Ur+1 = U + SV2 

with some v2 E Sq_ I II u ill. From the well-known characterization of 
closest points in subspaces of Hilbert spaces it follows that 

(6.5) IIu' + V211 = IIu'II2 + 11V2 1Iu'I12 + Il - IIurII2 

U2r+2 1U r21 Spq^ 2+ )I 1) In order to estimate u we use a duality argument IIu2'+2II = supa((, u2'+2)/IIuaII. 
Let 

GI Gq- GqI, GI . ......Gr + 
q q q q 

r + 1 alternating factors 
and Q = 1 - Ps_l be the projector associated to the exact coarse-grid-correction, 
then 

(6.6) u2r+2 = G*Ur+l u' = QUr, Ur = u. 

To understand this recall that u0 = Gqr+1u0 and that G*, the adjoint of G, is a 
product of r + 1 projectors such that GI is to be applied first. Now (6.5), (6.6) and 

= Q = Q* imply that 

(a U2r+2) = (a &*Ur+l) - (&a (1-3)u' + 3[u' + vj) 

< (1 -38)(6a, Q2Gu0) + 3IIGuII . IIu' + V2 

= (1 -38)(Q6W, QGu0) + 31IGaI1 * Ilurll 

< (1- )0Q1Gi IIOQGu0II + 311Gai1 * 11GuIll. 
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With this, the Cauchy-Schwarz inequality for 2-space yields 

(6.7) (u, u2r?2) < [(I -_ )IIQGu11 + 8IIjG-II2]l2 

*[(1 -3)IIQGu0II2 + IIdluo112]l/2. 

From (6.3) and (6.4) we conclude that (1 - 3)IIQGuII2 + 3IIGuII2 8 qlluI2 for each 
u E Sq and not only for u = uo, when putting 

(6 .8) Sq = maxl p [(I - 6 ) 2-p + 8 

Consequently (2,u u2r+2) s 3q Ilu'll lu0ll and IIu2r+211 I 3qllU0ll. In particular, the 
two-grid convergence rate STG is easily estimated by the evaluation of the maximum 
of pr(1 - p)(2 - p)-', cf. Table 1. 

TABLE 1 
Convergence rates (error damping per cycle) 

r 0 1 2 3 

3TG 0.5 0.172 0.114 0.086 

W-cycles: 
SMG,, = 2 0.187 0.120 0.089 
SMG,A=1,2 0.205 0.127 0.093 

V-cycles: 
1 1 1 

AMG,As=l 2 3 4 

if Q is a 
square: 

3TG 0.5 0.125 0.053 0.042 
PTG 0.5 0.074 0.041 0.028 

We also obtain by elementary calculations 

(6.9) < I 3TG <(r+ I)e 

A bound for the multigrid convergence rate 8MG,u= sup{ Sq' q > 1) is obtained by 
solving the equation 

(6.10) 8MGp<u =max pr 2 
0 < <1 2 p 

In Table 1 the results for the iteration with a V-cycle, i.e., for y = 1, and for two 
cases with W-cycles are listed. In the case where in the recursive procedure y = 1 
and u = 2 alternate (specifically y = 1 if qma.x - q is even, and y = 2 otherwise) the 
computing effort for one cycle is roughly the same as the effort for two V-cycles. The 
effort for the pure W-cycle is larger by a factor O(log h 1 ) since the number of 
unknowns per level grows only by a factor of 2. 

In the last two rows of the table there are the error damping factors in terms of 
the energy norm and the spectral radius p for the iteration which were calculated in 
[16] for rectangular or square domains by the Fourier method. 
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In any case the application of one Gauss-Seidel relaxation sweep per cycle, i.e. the 
choice r = 1, turns out to be the most efficient. This is consistent with the results 
from [14]. On the other hand we cannot decide whether the V-cycle or a W-cycle is 
preferable (even if we exclude the pure W-cycle). If we compare "log 3MG/effort per 
cycle" for different choices of the parameters, there are no large differences. From 
some extra calculations we find that the V-cycle is already substantially improved if 
merely on each fourth or fifth level the W-type is chosen. Nevertheless, our 
conservative bounds will possibly not tell us which parameters for r and y yield the 
best code. 

7. Concluding Remarks. We have emphasized that our proofs are no longer correct 
when C2 has got reentrant corners. Consider, e.g., the corner given in Figure 6, where 
Po, p3, p4 lie on the boundary. If ul = U2= 1, then 

(U1 -Uo) + (U2 - U0) = (U1 - U2)2 + (U2 - U3) + (U4 -U) 

in contrast to (4.3) and (4.9), where a factor 2 enters into the inequality. 

3 

4 o 2 

FIGuRE 6 
Reentrant corner 

It is not surprising for an investigation in the framework of finite element theory 
that reentrant corners may produce pollution effects. On the other hand the situation 
is not quite the same as in the analysis of the discretization error and here the 
pollution effects should probably not be overestimated. Since our calculations are 
always done in a local way, we have to replace (4.1) by 

JIG II||2 IU1u2 + 
I 

JIG II 12 

where 11 * lrc refers to the energy norm for the restriction to a neighborhood of the 
reentrant corners. Only if the error from the viewpoint of the iteration (i.e., 
Uq,k,O - Uq) were concentrated in the neighborhood of the corners, the actual 
convergence rate could be substantially worse than the bounds determined in the 
preceding sections. (For a rigorous treatment, the techniques developed in [15] might 
be used.) 

In this context a suggestion given by A. Brandt [5] is easily understood: If the 
computation shows large defects close to the boundaries, one should insert extra 
relaxation steps which operate in that region and which help to reduce the error 
there. 

Another point seems to be worth mentioning. The result (6.9) shows an asymp- 
totic behavior 

TG const * r-1 
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where r is the number of smoothing steps. It is well known (see e.g. [1], [9]) that the 
power of r depends on the difference of the indices of the involved Sobolev norms. 
We note, however, that the iteration with all smoothings performed before the 
coarse-grid-correction leads to a factor: const * r-'/2. The doubling of the power was 
gained by the duality argument. 

Implicitly, we have referred to the H1- and the H2-norms only. This becomes 
apparent, when the convergence of the V-cycles is shown in the framework of the 
setting of Bank and Dupont [1] by applying our techniques. Let u = 2ci4j be a 
spectral decomposition of u E Sh. Recall that IIuI12 = IIIu1112 = 2,X1c2 and put 
IuI2 : XiX1(1 - Xi/Xmax)C2. Then one Jacobi relaxation 

u ' 3 Ju = -Ai/Xmax) Ci 

implies a reduction of the 1. 111-norm by a factor p = IJUl2/1IJUl12. Moreover, if 
r > 1 Jacobi relaxations are performed, the error reduction in each step is at least as 
good as in the last step. Note that 

IIUI12 - 1U12 = (2/Xma)C2 = X 1j11IIUI2. 

Consider the multigrid algorithm with r Jacobi relaxations before the (8-perturbed) 
coarse-grid-correction and another r Jacobi relaxations after it. Then the damping 
factor for the 11 * 11-norm is estimated from above by 

max p2r[const(1 - p)(l - 8) + 8]. 
O<p<1 

Consequently, the iteration with V-cycles has a convergence rate less than or equal 
to const/(2r + const) < 1, provided that r > const/3. 
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